Klavaro - Typing Course

Advanced User-Manual - 1.0

Felipe E. F. de Castro

November 1, 2005

Contents

121 Kevboardlayvoudl 3

2__Typing valuation criterions 3

D1 Accuracdo 4
bo Velocitd, 4

b3 Fluidnesd 5
13__Used files and their formats 6

B.1 Keyboard layouts (virtual) o oo 7
B2 Wordsetd 7
B.3 Paragraphsetd 8
B.4 Proeress statisticd 8

List of Figures
[Fluxogrand 12

b Relations amone the source code filed 13

About this document

This is not a simple user manual telling what happens when clicking at
this one or that another button. If you look for something like that, then
you will have to be happy with just those tips, which appear in the program.
If all you want is to learn touch typing, try to use the application now and
read over the instructions therein. If you have already done this and found
difficulties, read the first part of this text here, about basic definitions. It
describes further the program main functions.

So, what might be missing to detail? We think it would be good to
put here the methods used in calculating the typing accuracy, velocity and
fluidness. And also some tips about the files used by the program, showing
how one may modify them in order to customize even more the course struc-
ture. Yes, you do not need to get into the C source code mess to achieve
an even greater flexibility. You just have to edit some text files. But if you
want to change things much more, then try to figure out the source code
structure, starting by reading the last part of this document.

Thus, this manual was written chiefly for the advanced user, interested
in modifying the basic characteristics of the program. If you make some nice
change and you think it might be useful for most of users, you may send it
for us to analize and, maybe, include it in a future official program release.
If the contribution is accepted, you will surely be mentioned in our Hall of
Collaborators:

http:/ /klavaro.sourceforge.net/en/contrib.html

1 General definitions

1.1 Main menu

The initial window presents startup and basic configuration menus. There
are b main startup options:

0. Introduction: instructions on how to position the hands.

1. Basic course: the file [basic lessons.ixf] defines the 43 lessons of this
course. This is where the keyboard layout most influences the exercises,
because the characters used in each lesson are defined by their positions
in the virtual keyboardl

2. Velocity exercises: this exercise depends on files containing a list of
words to be randomly inserted as fake sentences and paragraphs. Read
about them forward: file type [wordd

3. Fluidness exercises: common text files are used, from which three
paragraphs are randomly picked out to form each exercise. The file
must contain at least three paragraphs, separated by carriage returns.

http://klavaro.sourceforge.net/en/contrib.html

This is the unique exercise which allows (demands!) correcting errors

by the backspace key. Read further forward: file type

1.2 Basic configurations

The configurations relate to the keyboard layout and the applied lan-
guage.

1.2.1 Keyboard layout

The keyboard layout only has influence over the basic and adaptability
exercises. For example, if you need to type with dead keys but do not want
to type the accents twice, you may combine them with letters at the virtual
keyboard definition. So, we might define the set
{a, &, 1, &, i},
instead of

{\7/\7/7~7“}'
1.2.2 Language

The language is always detected during the initialization, through the
following environmental variables:

LANGUAGE

LC_ALL

LC_MESSAGES

e LANG

The first defined variable found, at this specific order, is the one used.
If the language to be used is not available in the program, it will try to use
Esperanto (seldomly) or English. Anyway, it is always possible to change to
one of the available languages after the program had already started.

2 Typing valuation criterions

All the three valuation criterions applied directly relate to the typing
skill qualification: the greater are their values, the best is the performance
estimated.

2.1 Accuracy

The accuracy is given as a function of the number of characters inserted
and of the ones correctly typed. In order to make this text more organized
and compact, let us use mathematical notations:

N, is the total number of characters inserted during a lesson or exercise.
N; is the number of characters incorrectly typed.
A, is the accuracy reached, given by a percentual of correct hits.

The formula to calculate this is very simple:
A, ==——"1.100 (1)

That is, an accuracy at 0% means that all the characters were incorrectly
typed. And 100% means that all the characters were correctly typed. For the
fluidness exercises, it is possible to get negative values, because the user can
make more mistakes than the number of characters inserted. When he/she
goes backward to correct these mistakes, perhaps new errors will be made:
that is not pardonable, the recurrent errors must be counted too.

2.2 Velocity

The velocity is a function of the number of characters correctly typed, in
a given amount of time.

t is the time the user takes to accomplish the exercise.

N. is the number of characters correctly typed, given by (N; — NV;).
Veps 1s the typing velocity, given as characters per second (CPS).
Viwpm is the typing velocity, given as words per minute (WPM).

Thus,:

N,
‘/cps =

t (2)
prm - 10"/cps

The factor 10, in the second equation, comes from that we use an average
as estimation. For each 6 characters, one word is counted in average: 5 letters

and 1 space. As one minute equals to 60 seconds, the transformation from
CPS to WPM is easy to be demonstrated:

WPM — CPS char. word <695) 10 CPS WO'I'd
S 6 char. min min
It would be better to use only the velocity as CPS, which is straighter,

but, for tradition reasons, we decided to keep also the WPM rating, which is
very common.

2.3 Fluidness

The fluidness case is defined more by a personal taste than by following
any standard. This criterion aims at valuating the concentration ability of
the typist and his/her adeptness over the keyboard. It is assumed that the
more the typist is used to the keyboard, the less hesitations occur between
touchs; and also, the methodic application of touch typing automatically
leads to a more and more constant (and healthier) rhythm.

The variable used to get to a measuring of fluidness is the time between
touchs, for those characters correctly typed. Suppose the following sentence
is to be typed:

We lived.

And the user has errored at letter [of word lived, changing it by h. He
just rimarked this after he typed the letter i, accumulating two errors before
backspacing to correct them. A possible representation for this pressed key
sequence 1is:

W | e h|il| <bs>| <bs>| | ilv]e|d]| .
* [% | * | 1|1 ! ! ¥ | % | % | x | x | %
t |ty | 3 t | ts | t6 | tr | ts | to

<bs> are the correcting backspaces; the valid touchs are symbolized by
asterisks and the invalid ones by exclamations. Then, symbolically, the times
between touchs are those which goes throught two consecutive asterisks and
the exclamations represent the introduced lags when mistakes are made. This
way, the instants t; are stamped when each correct touch occurs.

For this example, the time interval sequence is mounted this way:

T={T\=(ts—t1), To= (ts —ta), Ty = (ts — t3), ..., Ty = (tg — t5)}

5

Generally, we have: T; = (t;1; — t;), with ¢ varing from 1 to (n — 1),
where n is the number of characters correctly typed. To simplify the formula
definition for the fluidness calculation, some intermediate relations are put:

1
Xi - p—
T;
(n—1)
(n—1) <\ 2
Yo (Xi— X
SD(X) = C)

(n—2)

And finally, the calculation for fluidness is:

@:P_S%5W4m 3)

One recognizes the standard deviation formula at the definition of SD(X),
over the variable X. In an ideal case, with constant rhythm, this standard
deviation becomes null and the fluidness value results 100, the maximum
that can be reached. So, we bind this criterion to a percentual, the same way
as done with the accuracy.

3 Used files and their formats

Some of the files used by the program are saved in a subdirectory created
in the user folder:

(HOME)/ .klavaro

Other files, as they are static, are kept in the program’s data subdirec-
tory. In GNU systems, this folder is located at:

/usr/share/klavaro
or:
/usr/local/share/klavaro

3.1 Keyboard layouts (virtual)

In order to get a basic course which is independent of (or from?) keyboard
layout, it is necessary to keep information about the positions of each key in
the layout installed in the computer. Given this necessity, the independence
becames partial; but even so, the flexibility is very much improved, because
when the program does not have knowledge about some kind of keyboard,
it is still possible to insert such information. For that, the program provides
a special editor that interacts with a virtual keyboard, which reflects the
characters positions in a standard spatial distribution of keys, allowing to
define a great diversity of layouts.

The files used to save these layout informations have .kbd as extensions.
They are text files containing two sets of four lines. Each line represents a
row of 14 keys. And each character defines its positional relation with the
key which commands its insertion. For inexistent keys, a blank space is re-
quired. The first four lines define the lower-case characters, without pressing
<Shift>. While the four last lines define the characters inserted throught the
combination with the shift key. The control keys <Tab>, <Shift>, <Ctrl>,
etc, are not represented at all. Despite this detailed description, the most
secure way to create these files is by using the program editor, launched from
the Define button at the main menu.

To know how the .kbd files are used on the creation of the basic course
[essond read further about its configuration file, below at section Bl As an
example, here we show the file qwerty br.kbd:

©1234567890-=
qwertyuiop[]
asdfghjkl;’\
zxcvbnm, ./
Tre#) &k () _+
QWERTYUIOP{}
ASDFGHJKL: " |
ZXCVBNM<>7?

3.2 Word sets

In the velocity exercises, the words inserted come from a file with a .words
extension, which is just a text file containing a list of words, with or without

7

repetition, one by line.

For each language selected at the main menu there is a default dictionary
file, located at the program’s data folder. But it is possible to create new
dictionary files from common text ones. One just has to select the text from
the Other command, at the velocity exercises window. The files created this
way are saved in the subdirectory. These files are also automatically
generated when .paragraphs files are created, in the fluidness exercises.

3.3 Paragraph sets

In the fluidness exercises the inserted paragraphs come from the file with
a .paragraphs extension, a text file containing a list of sentences and para-
graphs.

For each language selected at the main menu there is a default paragraphs
file, located at the program’s data folder. But it is possible to create new
paragraphs files from common text ones. One just has to select the text
from the Other command, at the fluidness exercises window. The files cre-
ated this way are saved in the subdirectory and the words therein are
automatically used to generate a .words dictionary file.

3.4 Progress statistics

At the end of each exercise, the main performance measurements hitted
by the student are saved in logging files, so that they can be showed as
progress (or regress :-) charts.

These files are never overwritten. All the data get accumulated at their
end. Also here the subdirectory is used to save them. If you are not
happy with the simple charts provided by the program, you may use an
electronic spreadsheet, for example, to better visualize the data. The C
numeric format is always applied, to avoid surprises when logging with other
language configurations.

3.5 Texts of the course instructions

All of the course instructions are read from text files (.txt), stored at the
program’sldafalsubdirectory. Their name follow this model: LL_CC_Name . txt,
where LL is the language code, CC is the country code and Name reminds the

role of the text in the program. The following list shows all the instruction
files and what are they used for.

e LL_CC_help.txt - tiny ironic text to explain the redundancy of further
help in such a simple program full of tips.

e LL_CC_about.txt - general information such as: version, authors, etc.

e LL_CC_intro.txt - general instructions for the introduction on a touch
typing course.

e LL_CC_basic_intro.txt - introduction instructions for the basic course.

e LL_CC_adapt_intro.txt - the same thing for the adaptability exer-
cises.

e LL_CC_velo_intro.txt - the same for the velocity exercises.

LL CC fluid intro.txt - idem for the fluidness exercises.

The only files whose names do not follow strictly this template are the
original ones from English, as the language and country code used for them
is just “C”. If you want to modify anyone of these files, that is enough to
create a copy in the subdirectory and edit it there. The program first
searches in this folder before attempting to open the default one, at the data
subdirectory.

3.6 Basic course lessons

The way how are chosen the characters for each basic course lesson is
specified by the file called basic_lessons, at the data subdirectory. Each
lesson has a set of 11 lines, that must be ordered like this:

e Heading (no matter about its contents)

e Four lines specifying the normal characters

One blank line as separator

Four lines specifying the shifted characters

One more blank line as separator

The specification lines are made of 0’s and 1’s. The 1’s mean that the
character corresponding to that position must be included in the lesson. Log-
ically, the 0’s mean the opposite. The number of lessons is fixed at 43, that
is, the file must contain only 43 blocks of 11 lines. Follows as example the
listing of the first and the last lessons of the original file.

Lesson 01

00000000000000
00000000000000
00010010000000
00000000000000

00000000000000
00000000000000
00000000000000
00000000000000

Lesson 43

00000000000000
11100000000000
00000000010000
11000000111100

00000000000000
11100000000000
00000000010000
11000000111100

Be carefull when modifying this file, because you can loose the flexibility
of the basic course. If there is no interest on keeping this characteristic, then
you just must respect the file format. Remember: 43 lessons!

3.7 Tips about how to use the fingers

The floating hands tips are get also from a text file, similar to the
files. But in this case, that is enough to specify a set of only four lines, be-
cause the finger for each key is only one, independently of the combination
with a shift key. fingers position.tzt is the file name to store this mapping
between fingers and keys. It must remain in the data subdirectory.

10

Each digit, from 1 to 9, represents one of the hands fingers, and both
thumbs are represented by only one number. The list bellow describes this
codification.

1. Fourth finger (pinky), left hand
2. Third finger (ring), left hand
Second finger (middle), left hand

B

First finger (index), left hand

ot

Thumbs, does not matter of which hand
First finger, right hand

Second finger, right hand

Third finger, right hand

© » N>

Fourth finger, right hand

The file format defines a direct relation between the positions of keys in
the .kbd files and the positions where the digits (fingers) are put. For an
example, here is the listing of the original file:

11234466789999
12344667899900
12344667899900
11234466789900

4 Internal structure of the program

When reading the C source files and its headers, you must consider that
four of them were generated automatically through the program (Glade, ver-
sion 2.6.8. The Glade file defining the interface is the klavaro.glade, at the
source package tree root. And the derived files are:

e main.c - no comments needed, are they?

e support.c / support.h - supports the manipulation of pizmap (xpm)
files, internationalization, etc.

e interface.c | interface.h - functions to create all the items of the inter-
face.

11

http://glade.gnome.org

e callbacks.c / callbacks.h - set of callbacks raised from the interface con-
trols or events.

The file that is in a greater extent modified is the callbacks.c, because all
of the functions therein must be edited and defined after their initial auto-
matic generation.

The following two figures can be taken as a starting point to understand
how the program code is organized. We suggest that you first get used with
the program interface, playing a lot with the application and exploring all of
its features.

Figure 1: Fluxogram

Initial
Configurations

&
y, &
< Main L
4 Menu I
'«
< Charts , J
Help, A Fluidness
Informations,
Introduction \ 4
<€ 7|‘ Velocity
Shared
Language Options Tmornal
Confi \{ Chi
onfiguration 00sing Window
<€ 7|‘ Adaptability
Keyboard
Configuration
Basic

Keyboard
Editor / l(-— - —r— e — e — -
Display

A last observation to be made is that the comments in the source code
are writen also in English, as this is the commonest language in the computer
programming medium nowadays.

12

Figure 2: Relations among the source code files

main.c

Y
support.c interface.c ; keyboard.c
‘K/Z ttor.c
translation.c
Y
basic.c adapt.c velo.c fluid.c

As you, English native speaker, could verify reading this text, we do not
master the English writing and that is why many errors may be there.

And now answer sincerely: do you think it is fair, my friend?

13

	General definitions
	Main menu
	Basic configurations
	Keyboard layout
	Language

	Typing valuation criterions
	Accuracy
	Velocity
	Fluidness

	Used files and their formats
	Keyboard layouts (virtual)
	Word sets
	Paragraph sets
	Progress statistics
	Texts of the course instructions
	Basic course lessons
	Tips about how to use the fingers

	Internal structure of the program

